skip to main content


Search for: All records

Creators/Authors contains: "Boloni, Ladislau"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A smart home with a controller that can understandand predict the interaction between the external environment and the user’s behavior and preferences can provide significant energy efficiency and savings. Unfortunately, experimentation of real world homes for the development of such a controller is prohibitively expensive. In this paper we describe techniques through which such experiments can be performed on scaled testbed with an accelerated time. We illustrate how the modeling of different geographical areas can be performed by the mapping of the model’s temperature and time to their real-world equivalents. We train three different machine learning models for predicting different sensor readings in the testbed, and find that the achieved predictive accuracy supports the feasibility of the development of future smart climate controllers. 
    more » « less
  2. null (Ed.)
    Many elderly individuals have physical restrictions that require the use of a walker to maintain stability while walking. In addition, many of these individuals also have age-related visual impairments that make it difficult to avoid obstacles in unfamiliar environments. To help such users navigate their environment faster, safer and more easily, we propose a smart walker augmented with a collection of ultrasonic sensors as well as a camera. The data collected by the sensors is processed using echo-location based obstacle detection algorithms and deep neural networks based object detection algorithms, respectively. The system alerts the user to obstacles and guides her on a safe path through audio and haptic signals. 
    more » « less
  3. Augmented/virtual reality (AR/VR) technologies can be deployed in a household environment for applications such as checking the weather or traffic reports, watching a summary of news, or attending classes. Since AR/VR applications are highly delay sensitive, delivering these types of reports in maximum quality could be very challenging. In this paper, we consider that users go through a series of AR/VR experience units that can be delivered at different experience quality levels. In order to maximize the quality of the experience while minimizing the cost of delivering it, we aim to predict the users’ behavior in the home and the experiences they are interested in at specific moments in time. We describe a deep learning based technique to predict the users’ requests from AR/VR devices and optimize the local caching of experience units. We evaluate the performance of the proposed technique on two real-world datasets and compare our results with other baselines. Our results show that predicting users’ requests can improve the quality of experience and decrease the cost of delivery. 
    more » « less