Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available June 6, 2026
-
Communication is arguably the most important way to enable cooperation among multiple robots. In numerous such settings, robots exchange local sensor measurements to form a global perception of the environment. One example of this setting is adaptive multi-robot informative path planning, where robots’ local measurements are “fused” using probabilistic techniques (e.g., Gaussian process models) for more accurate prediction of the underlying ambient phenomena. In an adversarial setting, in which we assume a malicious entity–-the adversary-–can modify data exchanged during inter-robot communications, these cooperating robots become vulnerable to data integrity attacks. Such attacks on a multi-robot informative path planning system may, for example, replace the original sensor measurements with fake measurements to negatively affect achievable prediction accuracy. In this paper, we study how such an adversary may design data integrity attacks using a Generative Adversarial Network (GAN). Results show the GAN-based techniques learning spatial patterns in training data to produce fake measurements that are relatively undetectable yet significantly degrade prediction accuracy.more » « less
-
A smart home with a controller that can understandand predict the interaction between the external environment and the user’s behavior and preferences can provide significant energy efficiency and savings. Unfortunately, experimentation of real world homes for the development of such a controller is prohibitively expensive. In this paper we describe techniques through which such experiments can be performed on scaled testbed with an accelerated time. We illustrate how the modeling of different geographical areas can be performed by the mapping of the model’s temperature and time to their real-world equivalents. We train three different machine learning models for predicting different sensor readings in the testbed, and find that the achieved predictive accuracy supports the feasibility of the development of future smart climate controllers.more » « less
An official website of the United States government
